Carboxylic Acids, Sulfates, and Organosulfates in Processed Continental Organic Aerosol over the Southeast Pacific Ocean during VOCALS-REx 2008

L. M. Russell, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92030-0221, USA. (lmrussell@ucsd.edu)

1Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA.

2Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA.

3Pacific Marine Environmental Laboratory, NOAA, Seattle, WA, USA.
Abstract.

Submicron particles were collected on board the NOAA R/V Ronald H. Brown during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific marine boundary layer in October and November 2008. The aerosol in this region was characterized by low numbers of particles (150-700 cm\(^{-3}\)) that were dominated by sulfate ions at concentrations of 0.9 ± 0.7 µg m\(^{-3}\) and organic mass at 0.6 ± 0.4 µg m\(^{-3}\), with no measurable nitrate and low ammonium ion concentrations.

Measurements of submicron organic aerosol functional groups and tracer elements show that continental outflow of anthropogenic emissions is the dominant source of organic mass (OM) to the southeast Pacific with an additional, smaller contribution of organic mass from primary marine sources. This continental source is supported by a correlation between OM and radon. Saturated aliphatic C-CH (alkane) composed 41±27% of OM. Carboxylic acid COOH (32±23% of OM) was observed in single particles internally mixed with ketonic carbonyl, carbonate, and potassium. Organosulfate COSO\(_3\) (4±8% of OM) was observed only during the periods of highest organic and sulfate concentrations and lowest ammonium concentrations, consistent with a sulfuric acid catalyzed esterification mechanism for proposed surrogate compounds (e.g. glyoxal, 2-methyltetrol, and pinonaldehyde) from laboratory studies. This correlation suggests that in high sulfate, low ammonium conditions, the formation of organosulfate compounds in the atmosphere contributes a significant fraction of aerosol OM (up to 13% in continental air masses).
ganic hydroxyl C-OH composed 20±12% of OM and up to 50% of remote marine OM and was inversely correlated with radon indicating a marine source.

A two-factor solution of Positive Matrix Factorization (PMF) analysis resulted in one factor dominated by organic hydroxyl (> 70% by mass) and one factor dominated by saturated aliphatic C-CH (alkane) and carboxylic acid (together 90% by mass), identified as the Marine and Combustion factors, respectively. Measurements of particle concentrations in the study region compared with concentrations estimated from MODIS aerosol optical depth indicate that continental outflow results in MBL particle concentrations elevated up to 2 times the background level (less than 300 cm$^{-3}$) away from shore and up to 10 times the background level at the coast. The presence of both fossil fuel combustion and marine sources of oxygenated organic aerosol results in little change in the oxygenated fraction and oxygen to carbon ratio (O/C) along the outflow of the region’s dominant organic particle source.
1. Background

Aerosol particles in the marine boundary layer (MBL) are often mixtures of local primary (e.g. seasalt and organic compounds from seaspray), local secondary (e.g. sulfate from DMS oxidation), and transported primary and secondary emissions (e.g. organic carbon, elemental carbon, sulfate, nitrate, and ammonium) [Quinn et al., 1996; Maria et al., 2003; Allan et al., 2004; Quinn et al., 2006; Hawkins et al., 2008; Bates et al., 2008]. Relative contributions of the particle sources will determine the specific particle composition but organic compounds are almost always present and often compose a significant fraction of the total submicron mass [Zhang et al., 2007]; the large number of organic compounds present in ambient aerosol, in combination with their wide variety of hygroscopic properties, makes solubility of multi-component aerosols difficult to constrain using the available chemical information [Ervens et al., 2005; Prenni et al., 2007]. This constraint has resulted in the implementation of several methods to measure water uptake and solubility proxies including water soluble organic carbon (WSOC), optical hygroscopicity (f(RH)), and cloud condensation nuclei (CCN) concentration.

Chemically-based approaches to characterizing the properties of organic particle mixtures (in the absence of detailed compound quantification) have included identifying organic mass by the presence of hetero-atoms (OM/OC) [Russell, 2003; Russell et al., 2009a], the presence of functional groups [Maria et al., 2002, 2003, 2004; Gilardoni et al., 2007], or the atomic ratio of oxygen to carbon (O/C) [DeCarlo et al., 2007; Russell et al., 2009a]. These approaches rely on assumed relationships between these quantities and the mechanisms of their formation or the properties of the resulting organic mixtures. For example,
O/C has been used to infer the degree of atmospheric processing or photochemical “age” of organic aerosols under the assumption that emitted organic aerosol becomes increasingly oxidized (increase in O/C) with age [Russell et al., 2009a; Zhang et al., 2005a; Johnson et al., 2005]. This trend is consistent with laboratory measurements of secondary organic aerosol (SOA) formation pathways [Seinfeld et al., 2001; Donahue et al., 2005; Robinson et al., 2007] and field measurements of organic aerosol composition near organic particle sources [Zhang et al., 2005a; Russell et al., 2009a; Liu et al., 2009]. However, in these cases, the majority of the aerosol was formed either from gas or particle phase hydrocarbon compounds in the absence of a primary source of oxygenated aerosol. This assumption is an oversimplification, for example, in the anthropogenically-influenced marine atmosphere where primary emissions of oxygenated marine organic aerosol can mix with transported oxidized organic aerosol from continental sources [Mochida et al., 2002; Russell et al., 2009b].

Quantitative measurements of organic functional groups (measured either in bulk aerosol or in single particles) provide additional, detailed information on organic composition beyond O/C or WSOC fraction. FTIR measurements of carboxylic acid and organosulfate groups also provide estimates of the contribution of SOA to total OM, which is currently poorly understood [Donahue et al., 2005; Robinson et al., 2007]. Organosulfate groups in particular are a potentially large, yet currently rarely quantified, source of SOA owing to their ability to increase partitioning of semivolatile organic compounds from the gas phase to the particle phase [Liggio et al., 2005; Surratt et al., 2007a, b].

In this study we use measurements of particle concentrations, organic functional groups, elemental concentrations, and single particle composition to explore the composition,
sources, and processes influencing submicron aerosol chemical composition in the MBL. We investigate organic composition from Fourier Transform Infrared (FTIR) spectroscopy and from Quadrupole Aerosol Mass Spectrometry (Q-AMS) in order to improve our understanding of (1) the relative contributions of anthropogenic and marine sources to organic aerosol, (2) the oxidation of organic aerosols emitted from combustion sources, and (3) the significance and formation of organosulfate compounds in submicron aerosol. We also explore the significance and geographic distribution of continental outflow on the background MBL aerosol loading. The measurements used in this study were collected over a 42-day period aboard the NOAA R/V *Ronald H. Brown* (RHB) traveling near the western coasts of Peru and Chile using fixed temperature, relative humidity, and size-cut sampling protocols [*Bates et al., 2008*].

2. Introduction

The southeast Pacific MBL was the location of the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) conducted in October and November 2008. Strong southeasterly surface winds north of 23°S in this region follow the coast lines of Chile and Peru and drive intense coastal upwelling, making the coastal surface waters significantly colder than those found at similar latitudes in other regions [*Garreau and Muñoz, 2005*]. This cold surface water helps to sustain a large, uniform marine stratocumulus cloud deck present nearly year-round [*Richter and Mechoso, 2006*]. The strong southeasterly surface winds also transport aerosol and aerosol precursor components (*e.g.* sulfate, SO$_2$, dust, and organic components) from cities such as Santiago, Chile, to the marine boundary layer increasing the background concentration of particles and potentially impacting cloud drop number, concentration, albedo and precipitation
Artaxo et al., 1999; Bretherton et al., 2004; Huneeus et al., 2006]. A goal of the aerosol chemistry portion of the VOCALS-REx campaign was to characterize the composition, size, and variability of the submicron aerosol to improve understanding of the particle sources to the region and to better constrain the hygroscopic properties of the ambient aerosol. Radon (a decay product of rocks) has a 3.8 day half-life and was used to quantify the relative amount of continental influences on the sampled air masses. We have designated three air mass types based on radon concentrations and HYSPLIT back trajectories. Consistent with radon measurements, HYSPLIT back trajectories show air masses traveling from the south along the coast to the ship; air masses with back trajectories that had passed closer to land within 3 days of reaching the ship had higher radon concentrations.

3. Method

Submicron particles were collected through an isokinetic sampling inlet located on the forward deck of the RHB approximately 18 meters above sea level (masl) [Quinn et al., 2008; Bates et al., 2008; Russell et al., 2009a]. 37 mm teflon filters (Pall Inc.) filters for Fourier Transform Infrared (FTIR) spectroscopic and X-Ray Fluorescence (XRF) analyses were located downstream of a 1-µm sharp-cut cyclone (SCC 2.229 PM1, BGI Inc.) in a temperature and humidity controlled enclosure and were collected over 12 to 24 hours (short samples) with simultaneous 24 to 48 hour duplicate samples. Sampling times were adjusted based on the organic mass concentration measured by the Aerodyne Quadrupole Aerosol Mass Spectrometer (Q-AMS). Long sampling times allowed improved signal-to-noise ratios for the low concentrations of the organic functional groups (< 0.8 µg m⁻³) in the relatively clean marine boundary layer (MBL).
FTIR samples were kept at 0°C prior to FTIR spectroscopic analysis to reduce evaporative losses of organic compounds. Duplicate back filters accompanied each sample filter for the entirety of the sampling process and were analyzed to quantify the adsorption of volatile compounds and other sources of contamination. These back filters showed negligible infrared absorption. FTIR absorbance spectra of each sample and back filter were measured non-destructively using a Bruker Tensor 27 spectrometer with RT-DLATGS detector [Gilardoni et al., 2007] and were interpreted using a revised algorithm and calibration standards [Russell et al., 2009a]. Quantified functional groups include saturated aliphatic C-CH (alkane), unsaturated aliphatic C=CH (alkene), aromatic C=CH, non-acidic organic hydroxyl C-OH (alcohol, including phenol), primary amine C-NH, non-acidic carbonyl C=O, carboxylic acid COOH, and organosulfate COSO$_3$ groups. Non-acidic carbonyl C=O, aromatic C=C-H, and unsaturated aliphatic C=C-H (alkene) groups were below detection limit in all samples and were omitted from the discussion presented here. Organosulfate groups absorb at 876 cm$^{-1}$ and have interference from HSO$_4^-$ and CO$_3^{2-}$ absorption. To quantify this interference, filters with detectable absorption at 876 cm$^{-1}$ were rinsed with 2 mL of hexane solvent, which removes the organosulfate-containing compounds but not bisulfate or carbonate [Maria et al., 2003; Gilardoni et al., 2007]. Concentrations of organosulfate were determined from the peak area removed by the hexane rinse. The sum of all measured organic functional groups is used to determine organic mass (OM) concentration for each filter period. X-ray fluorescence on the teflon filters was completed by Chester Labnet (Tigard, Oregon) and provided concentrations of Na and heavier elements [Maria et al., 2003; Gilardoni et al., 2007; Russell et al., 2009a].
The Aerodyne Quadrupole Aerosol Mass Spectrometer (Q-AMS) measures bulk non-refractory submicron aerosol chemical composition and component-specific size distributions in real-time. Only a brief description is provided here; more detailed information on the Q-AMS can be found in Jayne et al. [2000] and Jimenez et al. [2003]. The instrument consists of a Time-of-Flight (ToF) sizing inlet followed by a 600°C vaporizer and electron impact ionizer. From there the sample is analyzed using a quadrupole mass spectrometer with 1 amu resolution. Quantified components include SO$_4^{2-}$, NO$_3^-$, NH$_4^+$, and organic mass. Collocated multi-stage impactors were used to collect inorganic samples for extraction and ionic analysis (761 Compact IC, Metrohm) [Quinn et al., 2006, 2008; Bates et al., 2008]. SO$_4^{2-}$ and NH$_4^+$ from ion chromatography (IC) analysis of the impactor samples were used to derive the collection efficiency of the AMS for the inorganic ions [Quinn et al., 2006]. The project average shows good correlation for sulfate (AMS vs IC slope = 1.09, r = 0.94) and ammonium (AMS vs IC slope = 0.85, r = 0.9) between the two methods and a collection efficiency (CE) of 1 is applied to the inorganic AMS measurements. The CE of organic mass was lower than 1 based on the FTIR/AMS comparison of OM as described in Section 4.3. Collocated measurements of condensation nuclei (CN) concentration for particle diameters greater than 13 nm were collected using a TSI 3010 condensation particle counter (CPC) on the shared inlet at 1-minute resolution.

From the same isokinetic inlet, single particles were collected by impaction onto silicon nitride windows (Si$_3$N$_4$, Silson Ltd, Northampton, England) for 30 min periods (Streaker, PIXE International Corp., Tallahassee, FL). The windows were kept at 0°C prior to analysis by Scanning Transmission X-ray Microscopy-Near Edge X-ray Fine Structure (STXM-NEXAFS) at the Advanced Light Source at Lawrence Berkeley National Laboratory in...
Particle morphology (e.g. spherical, irregular, or cubic) and mixture type (e.g. seasalt-organic, dust-organic, or combustion) can be determined from single particle images and optical density spectra of the carbon K-edge (between 278 and 305 eV). Mixture type is determined from STXM-NEXAFS spectra based on relative amounts of components (i.e. alkane, alkene, carboxylic carbonyl, ketonic carbonyl, carbonate, and potassium).

4. Results

4.1. Regional Extent of Continental Outflow to the MBL

Remote-sensing measurements of cloud drop radius analyzed by Bretherton et al. [2004] and Huneeus et al. [2006] have indicated that the large pollution sources, especially copper smelters, along the Peruvian and Chilean coasts could impact particle concentrations, cloud properties, and cloud albedo in the southeast Pacific MBL by significantly increasing particle concentrations above background levels, resulting in longitudinal gradients in particle concentration and cloud drop radii. One of the goals of the VOCALS-REx study was to quantify the extent of this continental outflow on the stratocumulus-topped boundary layer near 20°S. Defining a particle concentration for the “clean” marine atmosphere is not straightforward, as background concentrations are regionally and temporally variable. However, a survey of previous studies (Fig. 1a) suggests that particle concentrations (CN) between 300 and 500 cm$^{-3}$ are a reasonable upper limit for the clean MBL [Pirjola et al., 2000; Bates et al., 2000; O’Dowd et al., 2001; Twohy et al., 2005; Andreae, 2009]. Particle concentrations in the MBL defined as “polluted” in the same studies range from greater than 400 cm$^{-3}$ to greater than 1500 cm$^{-3}$. VOCALS-REx average CN concentration was 350±135 cm$^{-3}$, corresponding to a clean to moderately polluted MBL.
vations are limited to the cruise track and sampling times, so obtaining a regional picture of continental outflow from in situ measurements is difficult.

To address this issue, measurements of aerosol optical depth (AOD) from the Moderate resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra spacecraft were compared with filter-averaged CN concentrations when the satellite passed over the cruise track during clear-sky conditions. AOD was averaged over the entire latitude and longitude range traveled during the filter period. Due to the narrow satellite path and frequently cloudy skies, only three filters met the conditions for quantitative comparison. Measurements of AOD$_{500}$ from the ground-based AErosol RObotic NETwork (AERONET) and collocated measurements of CN concentration compiled by Andreae [2009] for clean and polluted marine environments were added to the comparison. Figure 1b shows the relationship between AOD and CN concentration for VOCALS-REx and previous studies in marine environments. MODIS AOD is slightly higher than AERONET AOD for similar aerosol loading though differences within the AERONET measurements for similar aerosol loadings are equally as large. Validation studies suggest that the two measurements agree within 2% when measurements are compared for the same wavelengths [Remer et al., 2002].

Figure 1c shows the average MODIS AOD for October and November 2008 during clear-sky conditions. South of 23°S, AOD is largely below 0.1, corresponding to CN concentrations less than 300 cm$^{-3}$ based on the comparison in Figure 1b. This horizontal band of low AOD is expected from westerly surface winds that increase in intensity from about 23°S to 30°S and bring relatively clean marine air to the southeast Pacific. North of 23°S, surface winds are generally easterly [Bretherton et al., 2004] bringing polluted air
masses from the Chilean coast west to the study region. Shipboard CN measurements have been converted to AOD using the best fit line for all points in Figure 1b. From only shipboard measurements, the latitudinal trend in AOD is not visible. A weak longitudinal trend is present, but the sharp decrease in AOD with distance from the coast is masked by patchy areas of intermediate aerosol loading. Because of the surface winds, the steep longitudinal gradient in particle concentration is superimposed on the large scale latitudinal trend. Near shore AOD ranged from 0.15 to 0.4 corresponding roughly to CN concentrations between 600 and 4000 cm$^{-3}$, with the highest AOD occurring within the first several hundred kilometers from the coast. AOD values from 0.1 to 0.15 (corresponding to 300 to 600 cm$^{-3}$), corresponding to a doubling of particle concentration, were observed at distances even greater than 1000 km from the nearest coastline in the region north of 23°S. Therefore, the outflow of continental emissions has only a minor, near-shore influence in the region south of 23°S, while the region north of 23°S appears to have particle concentrations significantly elevated above background levels, which would result in greater potential direct and indirect aerosol effects in, and to the north of, the VOCALS-REx study region. This finding supports the proposed hypothesis that continental outflow from the South American coast has a significant impact on ambient aerosol concentrations.

For in situ measurements, radon concentrations were used to categorize VOCALS-REx air masses as “continental” air masses (CAM), “mixed” air masses (XAM), and “marine” air masses (MAM). Based on calibrations, the lower limit of detectable radon for the project was 200 mBq m$^{-3}$. However, an increase in the background concentration of radon between the first and second calibration periods and subsequent adjustment to the
concentrations means that different radon concentration limits were needed for each leg to assign air mass categories. For Leg 1, MAM periods were defined by radon less than 250 mBq m$^{-3}$, CAM periods were defined by radon greater than 350 mBq m$^{-3}$, and XAM periods were defined between the two concentrations. For Leg 2, MAM periods were defined by radon less than 150 mBq m$^{-3}$, CAM periods were defined by radon greater than 300 mBq m$^{-3}$, and XAM periods were defined between the two concentrations. This assignment is a simplification to highlight similarities and differences among the samples and not to imply that only one type of particle was measured at a given time. In Figure 1b, colored vertical lines mark the average CN concentration during MAM, XAM, and CAM periods. For each filter, HYSPLIT back trajectories were calculated for the start, middle, and end of the sampling period at 50 masl, 100 masl, and 500 masl (Fig. 2) and are shown colored by air mass category. For most of the cruise, air masses traveled north, northeast, or east while south of 30°S latitude and then turned northwest, generally following the coastline. Radon measurements are consistent with HYSPLIT back trajectories; samples measured near the coast had higher radon (up to 1000 mBq m$^{-3}$) than those measured near 85° W latitude (less than 300 mBq m$^{-3}$).

4.2. Cluster Analysis of FTIR Spectra

Hierarchical Ward cluster analysis [Ward Jr, 1963] was used to separate the 31 sample FTIR spectra into three clusters (Fig. 3). For the cluster analysis, only absorbance between 4000 cm$^{-1}$ and 1500 cm$^{-1}$ was considered due to Teflon interference below 1300 cm$^{-1}$ and the absence of quantified groups other than organosulfate below 1500 cm$^{-1}$. Using more than three clusters resulted in clusters with only 3 spectra, which were considered too small to be meaningful. Cluster 1 has the highest carboxylic acid and alkane
fractions and a significantly lower organic hydroxyl fraction than the other clusters. Cluster 2 has twice the fraction of organic hydroxyl of Cluster 1 and less carboxylic acid and alkane. Cluster 3 has only slightly higher organic hydroxyl and lower alkane than Cluster 2 but includes three sample spectra all observed at the cruise location farthest from land and one sample with over 40% organic hydroxyl.

Figure 3(d) shows the fraction of sample spectra observed during each of the three air mass periods. Cluster 1 was observed in all three air mass types but was the dominant spectra type observed during CAM periods (63%) and was only observed in 17% of MAM periods indicating that the average composition of Cluster 1 represents the composition of processed continental organic aerosol. Cluster 3 was observed only during XAM (45%) and MAM (42%) periods, indicating that the higher organic hydroxyl fraction was related to a larger contribution from a marine organic source.

4.3. Organic, Inorganic, and Elemental Components

Figure 4 shows FTIR organic functional groups, AMS sulfate, ammonium, nitrate, and organic components. OM fraction from marine and combustion factors identified from PMF analysis for October and November 2008 are also shown (described in detail in Section 4.4). The variation in continental influence (radon) correlates with FTIR OM and AMS sulfate over the campaign. The sum of the organic functional groups defines total organic mass from FTIR. After 18 November the AMS was operated in Mass Spectrum mode with the particle beam permanently unblocked due to instrument malfunction. The background gas signal was obtained by closing the valve periodically, so sulfate concentrations after 18 November may have a higher uncertainty than measurements collected during normal operation, though baseline sulfate measured during the valve closed peri-
ods showed no change from baseline sulfate measured during normal operation. Organics, ammonium, and nitrate mass spectra overlap with air mass spectra and could not be estimated from the modified “closed” signal. Colored bars across the top axis show CAM, XAM, and MAM periods; total OM and sulfate were highest during CAM periods and lowest during MAM periods. Average concentrations of organic, inorganic, and elemental components for the campaign and CAM, XAM, and MAM periods are shown in Table 1.

Sulfate was the dominant component of the submicron mass with an average of 0.93 ± 0.67 µg m\(^{-3}\) and ranged from 0.67 µg m\(^{-3}\) in MAM to 1.4 µg m\(^{-3}\) in CAM. FTIR OM was between 0.18 and 1.9 µg m\(^{-3}\) with a project average of 0.59 ± 0.37 µg m\(^{-3}\). FTIR OM was only 0.4 µg m\(^{-3}\) in MAM compared with 1.0 µg m\(^{-3}\) in CAM. The average composition of the organic mass was 41±27% alkane, 32±23% carboxylic acid, 20±12% organic hydroxyl, 3±2% primary amine, and 4±8% organosulfate. Carboxylic acid fraction showed a small decrease from CAM to MAM while organic hydroxyl fraction increased from 16% to 22%.

O/C and OM/OC ratios for the entire campaign were 0.62±0.12 and 2.0±0.19, respectively, and showed little change over the three air mass types. Elements above detection limit in greater than 20% of samples include S, Sn, V, Fe, K, Br, Ca, and Ni; other elements measured by XRF were below detection limit in more than 80% of the samples and are not included in chemical comparisons. Concentrations of all reported elements show a decrease from CAM to MAM, with intermediate values reported for XAM, consistent with the air mass classification.

Figure 5 shows the relationship of OM, sulfate, XRF elements, carboxylic acid fraction, organic hydroxyl fraction, FTIR O/C, and AMS m/z 44 fraction with radon. The inverse linear correlation (r=-0.5) of radon with actual distance from the nearest coast was used.
to provide an approximate distance (km) from the coast on the top axis as a reference
guide. FTIR OM, dust, metals, and carboxylic acid fraction correlate with radon with $r > 0.5$. AMS sulfate has a weaker positive correlation to radon, possibly because the source
of sulfate was much stronger near the southern part of the cruise track and radon was
higher near the northern part of the cruise track (along the coast of Peru). The organic
hydroxyl fraction shows no correlation to radon ($r = -0.23$). Alkane fraction (not shown
in Figure 5) does not show a trend with radon consistent with contributions from both
continental and marine sources to alkane groups.

FTIR O/C and AMS m/z 44 fraction of OM are shown in the top two panels of Figure 5.
FTIR O/C is calculated from the total number of oxygen atoms from oxygen-containing
functional groups normalized by the total number of carbon atoms from all groups [Gi-
lardoni et al., 2007; Russell et al., 2009a]. AMS O/C is estimated from the ratio of m/z
44 fragment to AMS OM, which has shown a consistent relationship with atomic O/C
from Elemental Analysis (EA) for both laboratory and field measurements [Aiken et al.,
2008]. The accuracy of reproducing atomic O/C from EA varies with organic compounds
and is based on the fragmentation of organic acid groups which are assumed to be present
in proportion to other oxygen-containing organic functional groups, including organic hy-
droxy groups [Aiken et al., 2007]. The m/z 44 fraction of AMS OM, which is reported
to have a linear relationship with atomic O/C [Aiken et al., 2007] correlates with radon
($r=0.56$) while FTIR O/C shows no clear trend with radon reflecting the composition of
the organic mass based on a mixture of both carboxylic acid and other oxygenated organic
functional groups (discussed in detail in Section 5.2).
4.4. Comparisons of FTIR and AMS Organic and Sulfate Concentrations

FTIR OM was correlated with AMS OM (r = 0.7) and was higher than AMS OM by a factor of 2.4 on average (Fig. 6). In previous field measurements, the two methods have been within 20% of each other, which is within the 20-30% uncertainty associated with both measurements [Gilardoni et al., 2007, 2009; Russell et al., 2009a]. Adsorption of organic gases onto the filters was eliminated as a possible reason for the discrepancy because the back-filters showed negligible OM and the discrepancy in OM was independent of sampling duration and showed no diurnal dependence. A portion of this difference can be explained by organosulfate COSO$_3$ groups. In AMS mass spectra and the fragmentation table used to assign mass fragments to particular components, only the carbon-containing fragment of the organosulfate would be attributed to organic mass. The sulfate fragment typically would be attributed to inorganic sulfate leading to a smaller organic mass measured by AMS than by FTIR when organosulfate groups are present. However, the organosulfate contribution can only explain a small fraction of the observed difference in OM between the two methods because sulfate from organosulfate groups composes only 0% to 12% of OM.

Another possible explanation for the discrepancy is an AMS OM collection efficiency (CE) less than the 100% measured for sulfate. Laboratory and field measurements have shown that solid particles have a much lower CE than liquid particles [Matthew et al., 2008] due to particles bouncing off the vaporizer before volatilization. For example, drying ammonium sulfate below its efflorescence relative humidity can reduce the CE of submicron particles from 100% to as low as 20% [Alfarra et al., 2004; Allan et al., 2004; Matthew et al., 2008]. Ambient organic compounds are mostly present as liquids and generally have
100% CE [Alfarra et al., 2004; Zhang et al., 2005b] when they are not mixed with other components. The CE of organic components in organic and sulfate mixtures can be approximated to the CE of sulfate, generally measured independently [Jimenez et al., 2003; Drewnick et al., 2003; Bates et al., 2005; Quinn et al., 2006]. However, the collection efficiency of organic mass may be lowered if the organics are present on refractory particles with very low collection efficiencies, especially if the ratio of organic mass to refractory material is low. The CE of refractory material is not measurable since the AMS can only measure species that volatilize at the set operating temperature (600°C). In this case, only an independent measure of OM can provide an accurate determination of organic CE, similar to the correction applied to AMS sulfate by collocated, time-integrated ion chromatography.

The difference in OM between FTIR and AMS is correlated (r = 0.8) with the concentration of dust elements (nss-K, nss-Ca, Al, Si, Fe, and Ti) measured by XRF (Fig. 6, inset). Aluminum and silicon are included here for above detection limit samples although they were not above detection in more than 20% of the samples and they are not included in Table 1. This relationship is consistent with the hypothesis that the reduced CE of AMS organic mass was caused by particles containing organic and dust components, rather than organic-sulfate mixtures. Further, organic single particles identified with STXM-NEXAFS that were internally mixed with carbonate and potassium, corresponding to type “f” spectra (dust) in Takahama et al. [2007], represent 47 of the 96 submicron single particles analyzed. Other identified types include secondary (type “a”), biomass (types “i” and “j”), and combustion (an umbrella class including six particle types) (Fig. 7a). In previous studies, dust type single particles have composed less
than 20% of the measured particles [Takahama et al., 2007]. Figure 7b shows the average optical density spectrum of VOCALS organic-dust particles, with strong absorbances from carboxylic carbonyl, carbonate, and potassium. Using an algorithm developed by Takahama et al. [2009], the organic mass fraction of some particles identified as organic and dust mixtures was estimated to be 0.34±0.24 on average. The uncertainty associated with the estimated organic mass fraction depends on the homogeneity of the single particle mixture and varies widely over the analyzed particles, but it is clear that the particles have significant dust fractions that may make them more susceptible to phase-dependent particle bounce in the AMS. These single particles were collected over a large geographical area and include measurements both near to and far from the continent making the small number of particles analyzed fairly representative of the regional submicron organic particle population.

Sulfate composed a large fraction of the observed submicron mass and has anthropogenic and marine sources. The continental sources of sulfate in South America include copper smelting, diesel, and coal combustion and appear to dominate the marine source of sulfate (oxidation of DMS) given the high coastal concentration of sulfate and the strong correlation with radon. In Figure 6b, the sum of inorganic sulfate (IC sulfate) and organic sulfate from organosulfate (COSO$_3$) is compared with AMS sulfate. IC sulfate, unlike AMS sulfate, does not include organosulfate because IC sulfate is not fragmented before analysis. Sulfate from organosulfate is not distinguished from inorganic sulfate in the AMS due to fragmentation of the organosulfate group into an organic fragment and a sulfate fragment. A slightly more accurate CE for AMS sulfate is therefore determined
by comparing it with the sum of organic and inorganic sulfate. The strong correlation (r = 0.98) and slope of 0.93 are consistent with the AMS CE of 1 for sulfate.

Further evidence of organic and sulfate components occurring on different particle populations is given in Figure 8. The negative correlation (r = -0.85 for all air masses) of the organic acid fraction of PM$_1$ with the sulfate fraction of PM$_1$ indicates that the two components result from different sources. For CAM only, the inverse relationship is stronger (r = -0.92). Conversely, the acid fraction of PM$_1$ is mildly correlated to the dust fraction of PM$_1$ (r = 0.70) in all air masses and is more strongly correlated (r = 0.85) for CAM only. As expected, continental air masses show higher correlations among continental emissions than the XAM and MAM air masses in which other source types reduce the correlation. These relationships, combined with single particle measurements and the observed differences in AMS CE for organic and sulfate components, suggest that much of the organic mass was not present on sulfate-containing particles.

4.5. Combustion and Marine Organic Aerosol Factors

Positive Matrix Factorization (PMF) was used to identify source factors from FTIR sample spectra [Paatero and Tapper, 1994] including only portions of the sample spectra with quantified peaks. One advantage of PMF is that the uncertainty associated with each measurement is included and used to constrain the determination of source factors. For each wavenumber, the standard deviation of the absorbance from all back filters was set as the measurement uncertainty. Results for 2, 3, 4, 5, and 6 factor solutions were explored and although the Q value (a normalized chi-square metric) was lowest for the 6-factor solution, a 2-factor solution was found to best represent the data. More than 2 factors resulted in factors that were not linearly independent. Also, the XRF elemental
correlations with the additional factors in the 3, 4, 5, and 6-factor solutions were nearly identical to the correlations with one of the two factors in the 2-factor solution, indicating factor-splitting beyond two factors [Ulbrich et al., 2009]. The 2-factor solution was able to reproduce greater than 90% of the absorbance signal and greater than 75% of the organic mass, demonstrating that two factors are sufficient to represent most of the organic mixture features in the VOCALS-REx spectra. FPEAK (rotation) values from -0.4 to 0.4 were tested with the 2-factor solution but no significant difference was found among the rotations; FPEAK = 0 is presented here as a representative example. The two source spectra are shown in Figure 9 along with their average composition determined by integrating the factor spectra following the method for ambient spectra. The “Combustion” factor comprises mainly alkane (65%) and carboxylic acid (27%) groups and correlates with XRF measurements of sulfur, potassium, calcium, and metals while the “Marine” factor is over 70% organic hydroxyl and either weakly or inversely (if at all) correlated to the same elements (Table 2). Vanadium was weakly correlated to Marine OM and is emitted by residual oil combustion on ships and on land, so the small correlation observed is consistent with the interpretation of factor composition as “Marine”. Figure 4c shows the fraction of organic mass associated with each factor for October and November 2008. The Combustion factor dominates the organic mass for most of the campaign. However, during some MAM periods, the fraction OM associated with the Marine factor is greater than 50%, illustrating the importance of marine organic sources to total OM in the remote marine atmosphere.
5. Discussion

5.1. Continental Sources of Organic, Inorganic, and Elemental Components

OM was an order of magnitude higher near the South American continent than in the remote marine atmosphere and correlations of OM with radon, sulfate and elements from dust or soil (Ca, Fe, and K), and industrial activities (S, V, Br, Ni, Sn) support an anthropogenic continental source of OM. Because air masses moved generally northward to the ship’s location, measurements during CAM periods were likely influenced by urban centers along the Chilean coast south of the ship’s track, such as Santiago. Artaxo et al. [1999] determined concentrations of elements in Santiago fine mode aerosol ($D_p < 2 \mu m$) using Particle-Induced X-ray Emission (PIXE). Samples were collected in two sites in downtown Santiago and several sources of PM$_{2.5}$ were identified by Absolute Principle Factor Analysis (APFA). The identified sources include sulfate (oxidized SO$_2$ from coal combustion) (64%), resuspended soil dust (15%), traffic emissions (16%), and oil combustion (2%). For consistency we will limit our comparison to elements in Table 1. Elements associated with the “Sulfates” factor are S, Sn, and K. Sn is not commonly found in urban aerosols but is particular to the soil in Chile which is enriched in Sn [Artaxo et al., 1999]. Elements associated with “Oil Combustion” include Ni, V, and to a smaller extent, K, all of which were observed in our samples. Automobile and bus emissions are classified as the “Transport” factor and include Br, Sn, and K. Black carbon is most associated with the traffic emissions which are also the most likely anthropogenic source of organic compounds. Elements associated with the “Resuspended Soil Dust” factor are Ca and Fe. Resuspended soil dust in Santiago is contaminated with heavy metals and was observed by Artaxo et al. [1999] to be heavily mixed with traffic emissions. This observation is
consistent with our single particle measurements of organic, carbonate, and potassium mixtures (Fig. 7) and with the hypothesis that much of the organic mass was present on refractory particles (Fig. 8b) rather than sulfate-containing particles.

Other cities along the Chilean and Peruvian coast are likely to contribute to the observed OM, sulfate, and elemental components but Santiago is a large and likely representative source of the regional anthropogenic aerosol particles with over 50 μg m$^{-3}$ PM$_2$ measured during the 1996 campaign. Artaxo et al. [1999] report sources of PM$_2$ specific to Santiago, Chile, that are similar to the measurements of inorganic and elemental components observed during VOCALS-REx. The proximity of Santiago to the back trajectories in the Continental samples and the magnitude of it as an emission source indicate that much of the observed organic mass associated with dust and metal components in our measurements originated from cities such as Santiago.

5.2. Marine Sources of Organic Components

During MAM periods and some XAM periods, OM was as low as 0.2 μg m$^{-3}$ and had a significantly different functional group composition from CAM periods. The organic mass observed during MAM periods was identified to be mainly “Marine” from PMF analysis but was not purely marine OM given the small but detectable amounts of Fe and V in the submicron particles. Organic hydroxyl groups composed 71% of OM associated with the Marine factor compared to only 6% of OM in the Combustion factor and are found in polysaccharides and fatty alcohol molecules which, in addition to fatty acids, are some of the molecule types thought to be concentrated on the ocean’s surface [Aluwihare et al., 1997]. Biogenic organic compounds on the ocean’s surface can be emitted to the atmosphere during bubble bursting [Blanchard and Syzdek, 1970; Hoffman and Duce, 1977;
Tseng et al., 1992; Mochida et al., 2002; O’Dowd et al., 2004; Cavalli et al., 2004; Leck and Bigg, 2005; Russell et al., 2009b]. Russell et al. [2009b] show a large contribution from a similar PMF-derived marine OM in the Arctic and North Atlantic and positive correlations between marine OM and sea salt. In addition, comparisons of PMF-derived marine factors (including the marine factor presented here) to reference di- and polysaccharides imply very similar composition, with large contributions from organic hydroxyl to the total organic mass [Russell et al., 2009b].

5.3. Effect of Mixing Combustion and Marine Oxygenated Organic Aerosol on O/C

Observations of organic aerosols close to and more distant from particle sources generally show an increase in oxygenated groups such as carboxylic acids and a decrease in hydrophobic groups such as alkenes and alkanes with distance from source [Zhang et al., 2007; Gilardoni et al., 2007; Russell et al., 2009a]. Quantifying transformations of organic aerosol components such as oxidation of alkane, alkene, and aromatic groups to organic hydroxyl and carboxylic acid groups is often complicated in remote regions when multiple sources are mixed during transport and because some transformations are more rapid than others [Volkamer et al., 2006]. A simplified proxy for photochemical aging is the atomic O/C ratio of organic aerosols, which increases with photochemical age due to an increasing fraction of oxidized chemical groups [Zhang et al., 2007; DeCarlo et al., 2007, 2008; Russell et al., 2009a]. The usefulness of O/C in organic aerosol measurements has resulted in new efforts to measure O/C in real time at high time resolution with the Aerodyne Aerosol Mass Spectrometer [Aiken et al., 2007, 2008; DeCarlo et al., 2007]. Elemental analysis (EA) of High Resolution (HR) mass spectra shows fairly good agreement
with atomic O/C and H/C ratios for laboratory standards, although O/C in groups such as organic hydroxyl were under-predicted by as much as 50% [Aiken et al., 2007]. The observed O/C ratio during VOCALS-REx from organic functional groups (FTIR) agrees with O/C estimated from the mass fraction of m/z 44 (AMS) for samples with the lowest organic hydroxyl fractions (< 15%), but is up to 5 times larger in samples with greater than 30% organic hydroxyl. This difference is most important in the more remote samples which have a smaller contribution from continental OM and larger contribution from marine OM, and therefore a larger fraction of organic hydroxyl groups. Further, because O/C of the organic aerosol does not change significantly in the remote atmosphere it is not a relevant metric for photochemical age of transported particles. Consequently O/C does not represent a relevant metric for changes in the composition from atmospheric processing and is unlikely to provide a direct proxy for CCN activity or other aerosol properties.

5.4. Aqueous-Phase Formation of Organosulfate Groups

The contribution of SOA to total organic aerosol mass is variable even on small time and spatial scales and depends on a large number of factors including gas phase precursor concentrations, oxidant levels, time of day, and preexisting aerosol [Odum et al., 1996; Maria et al., 2004; Donahue et al., 2005], making model predictions of SOA challenging and often inaccurate when compared with measurements [Heald et al., 2005; De Gouw et al., 2005; Volkamer et al., 2006; Robinson et al., 2007]. Identifying, separating, and quantifying SOA in ambient mixtures of primary and secondary organic aerosol is therefore a key step towards understanding the major formation pathways and the top parameters controlling SOA production. Recently several studies have highlighted the potentially important role
of organosulfate formation in increasing SOA yield by increasing partitioning of semi-
volatile organic compounds (SVOCs) into the particle phase [Liggio et al., 2005; Romero
and Oehme, 2005; Surratt et al., 2007a, b; Lukács et al., 2009; Altieri et al., 2009]. Liggio
et al. [2005] identified organosulfate compounds in laboratory aerosol particles generated
from a variety of oxidation products of glyoxal and sulfate seed aerosol. Altieri et al.
[2009] found organosulfate compounds in rainwater samples that contained other com-
pounds characteristic of SOA, such as organic acids. However, few quantitative ambient
measurements of organosulfate compounds or groups exist, providing little basis for esti-
mating the atmospheric importance of organosulfate groups relative to other secondary
organic aerosol products, such as carboxylic acids [Maria and Russell, 2005; Gilardoni
et al., 2007; Surratt et al., 2008; Lukács et al., 2009; Russell et al., 2009a]. Size-segregated
measurements of organosulfate in rural fine aerosol particles collected in Hungary show a
peak in estimated organosulfate concentration (6-14% of total sulfate) for particle diam-
eters near 400 nm coinciding with the typical peak in effective surface size distribution
[Lukács et al., 2009], consistent with proposed heterogeneous mechanisms from laboratory
studies [Liggio et al., 2005; Surratt et al., 2007a, b].

VOCALS-REx organosulfate group concentrations were more strongly associated with
continental emissions than marine organics with 51 ng m$^{-3}$ in CAM, 29 ng m$^{-3}$ in XAM
and 15 ng m$^{-3}$ in MAM and composed up to 13% of OM and up to 9% of total sulfate.
Our measurements show a strong positive correlation ($r = 0.85$) between organosulfate
and sulfate fractions of PM$_1$ (Fig. 10a) and a strong inverse correlation ($r = -0.87$) be-
tween organosulfate and ammonium fractions of PM$_1$ (Fig. 10b), consistent with both
particle-phase formation by reaction with condensed sulfate and acid catalysis. The high-
est observed organosulfate concentration coincided with the peak sulfate concentration
and the highest ratio of sulfate to ammonium measured. This is consistent with obser-
vations from Surratt et al. [2007a] and Liggio et al. [2005] of increased SOA yield with
increasing acidity due to an acid-catalyzed mechanism for sulfate esterification of biogenic
and anthropogenic VOC oxidation products.

Laboratory studies with glyoxal oxidation products by Liggio et al. [2005] show a
stronger relationship between relative humidity (RH) and SOA yield than particle acidity.
They observed little SOA formation below 50% RH, which they attribute to a reaction
mechanism requiring aqueous dissolution of the organic VOC (i.e. glyoxal) prior to ester-
ification. A significant increase in SOA yield was observed above 50% RH, however, at
very high RH (above 80%) a small decrease in SOA yield was observed. This trend was
attributed to the dilution of the hydrated glyoxal available as reactant and the reduction
of the particle acidity. Figure 10c shows the inverse relationship between organosulfate
fraction of PM$_1$ with ambient relative humidity (r = -0.55) above 65% RH consistent with
Liggio et al. [2005].

HYSPLIT back trajectories shown in Figure 2 indicate that even CAM samples had
spent two to three days in the stratocumulus-topped MBL so cloud processing may also
play a role in the observed organosulfate group concentrations. Other work has shown that
cloud and fog processing may play a significant role in SOA formation through aqueous
phase photooxidation of organic components [Blando and Turpin, 2000; Sorooshian et al.,
2007; Perri et al., 2009]. The VOCALS results are consistent with the role of aqueous
particles in organosulfate production, but they suggest that higher amounts of liquid water
associated with some cloud conditions may reduce the yield of organosulfate. However,
ambient relative humidity was correlated with the ratio of ammonium to sulfate ($r = 0.71$) such that the driest conditions coincidentally had the most acidic sulfate aerosol. The tighter correlations of organosulfate fraction with sulfate implies that particle acidity had a more direct relationship with organosulfate formation than ambient RH for VOCALS-REx conditions (which were all at RH $> 50\%$). The observed trends in VOCALS-REx organosulfate concentration suggest that in regions with similar conditions (i.e. RH above 50%, high sulfate concentrations relative to ammonium, and elevated VOC concentrations) organosulfate may have a significant contribution to SOA mass.

6. Conclusion

Organic functional groups measured in submicron particles showed higher carboxylic acid fractions (and lower organic hydroxyl fractions) in CAM than in MAM and no measurable change in O/C ratio with radon or distance from the continent, consistent with oxygenated organic groups from both marine and continental sources. OM associated with continental tracers such as radon, sulfate, and dust elements was on average 4 times that observed during periods of very low continental influence. In the most remote sampling location, OM associated with the Marine factor was greater than 50% of the total OM measured by FTIR spectroscopy. Satellite measurements support the hypothesis that continental outflow is a significant source of aerosol to the region around 20°S; in situ measurements give estimated particle concentrations for the satellite AOD, while providing detailed size and chemistry information. A comparison of OM and O/C from FTIR spectroscopy and AMS showed that the AMS may have a reduced CE for organic mass on refractory particles and that m/z 44 fraction of OM may not accurately predict atomic O/C when organic hydroxyl composes a large fraction of OM.
Measurements in CAM show a strong positive correlation between carboxylic acid fraction and dust fractions of PM$_{1}$ and a strong negative correlation between carboxylic acid and sulfate fractions of PM$_{1}$, consistent with observed differences in AMS CE for organic and sulfate that indicate external mixtures of the two components. Previous measurements of submicron aerosol within Santiago show similar elemental signatures to those measured on board NOAA R/V *Ronald H. Brown* supporting the identification of this large source of PM$_{1}$. Organosulfate groups were frequently present in significant fractions of OM (3-13%) and correlated positively with sulfate fraction and inversely with ammonium fraction and ambient relative humidity, consistent with previously reported ambient and laboratory studies. Additional measurements of organic functional group concentrations would provide a more detailed, quantitative understanding of the sources and processes controlling submicron organic mass in the southeast Pacific MBL.

Acknowledgments. This work was supported by NSF grant ATM-0744636. PKQ, TSB, and DSC were supported by the NOAA Climate Project Office, Atmospheric Composition and Climate Program. The authors would like acknowledge Shang Liu for analysis of single particles by STXM-NEXAFS and Satoshi Takahama for technical assistance with STXM and PMF analyses. We would also like to thank Derek Coffman, James Johnson, and Catherine Hoyle for their assistance in sample collection and analysis as well as the captain and crew of the NOAA R/V *Ronald H. Brown* for their support in the field.

References

Environ., 36(33), 5185–5196.

Surratt, J. D., M. Lewandowski, J. H. Offenberg, M. Jaoui, T. E. Kleindienst, E. O. Edney,
and J. H. Seinfeld (2007a), Effect of acidity on secondary organic aerosol formation from

Surratt, J. D., et al. (2007b), Evidence for organosulfates in secondary organic aerosol,

Surratt, J. D., et al. (2008), Organosulfate formation in biogenic secondary organic aerosol,

Takahama, S., S. Gilardoni, L. M. Russell, and A. L. D. Kilcoyne (2007), Classification of
multiple types of organic carbon composition in atmospheric particles by scanning
transmission X-ray microscopy analysis, *Atmos. Environ.*, 41(40), 9435–9451, doi:
10.1016/j.atmosenv.2007.08.051.

Takahama, S., S. Liu, and L. M. Russell (2009), Coatings and clusters of carboxylic acids in
carbon-containing atmospheric particles from spectromicroscopy and their implications

Tseng, R., J. T. Viechnicki, R. A. Skop, and J. W. Brown (1992), Sea-to-air transfer of

Twohy, C. H., M. D. Petters, J. R. Snider, B. Stevens, W. Tahnk, M. Wetzel, L. Russell,
and F. Burnet (2005), Evaluation of the aerosol indirect effect in marine stratocumulus
clouds: Droplet number, size, liquid water path, and radiative impact, *J. Geophys. Res.*,

Figure 1: (a) Particle concentrations (and ranges of concentrations) classified as “clean marine” and “polluted marine” in previous studies. (b) Satellite-derived AOD from MODIS (this work, closed squares) and AERONET (Andreae [2009], open squares) compared with CN measurements. In all cases, error bars represent one standard deviation on the mean. The best fit line (AOD = 0.0017*CN^{0.66}) includes both MODIS and AERONET measurements. Blue, green, and tan vertical lines mark the average CN concentration during MAM, XAM, and CAM periods, respectively. (c) Average MODIS AOD for October and November 2008 for study region. White regions (missing data) were cloudy during both October and November. Cruise track of the NOAA R/V Ronald H. Brown is shown in black. Shipboard CN measurements are overlaid on the cruise track.
Figure 2: Track of the NOAA R/V *Ronald H. Brown* during VOCALS-REx from 21 October to 30 November 2008 and average location of each filter, marked by colored squares. Squares are colored by air mass assignment determined from average radon concentration. Nine 3-day HYSPLIT back trajectories (beginning, middle, and end of filter period at 50 m, 100 m, and 500 masl) are shown for (a) continental (CAM), (b) mixed (XAM), and (c) marine air masses (MAM).

Figure 3: Ward cluster analysis on the 31 normalized sample spectra produced 3 clusters (Panels a-c). Average spectra of each cluster are shown in black. Pie charts show the average functional group composition of each cluster. Colored bars shown along the x-axis correspond to functional groups in the legend and indicate approximate absorbance region of each functional group with the exception of organosulfate, which is not included in the cluster analysis but is shown on the pie charts. (d) Fraction of sample spectra from each cluster for MAM, XAM, and CAM.
Figure 4: Time series of (a) FTIR functional groups, (b) AMS inorganic and organic components, and (c) fraction of OM from marine and combustion PMF factors. Colors across the top of (a) indicate air masses: CAM (tan), XAM (green) and MAM (blue). AMS organics, nitrate, and ammonium are not available after 18 November due to instrument malfunction. AMS sulfate has been estimated from the MS Open mode and the valve closed signal. Radon is a proxy for continental influence.
Figure 5: From top to bottom: AMS m/z 44 mass fraction, FTIR atomic O/C, FTIR organic hydroxyl fraction of OM (by mass), FTIR carboxylic acid fraction of OM (by mass), sum of XRF elements K, Ni, Ca, Fe, Sn, V, Br (ng m\(^{-3}\)), AMS SO\(_4^{2-}\) (µg m\(^{-3}\)), and FTIR OM (µg m\(^{-3}\)). For AMS SO\(_4^{2-}\), the open squares have been omitted from the reported linear regression (solid line) to illustrate the southerly bias of AMS SO\(_4^{2-}\). The dashed line includes all AMS SO\(_4^{2-}\). The top axis is approximate distance in km from the nearest coast, as derived from the linear regression of actual distance vs radon.
Table 1: Mean and Standard Deviation of Measured OM, Organic Functional Group, O/C, m/z 44 fraction, and Elemental Concentrations for VOCALS-REx and for Periods defined as CAM, XAM, and MAM.

<table>
<thead>
<tr>
<th></th>
<th>VOCALS-REx</th>
<th>CAM</th>
<th>XAM</th>
<th>MAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance to Coast (km)</td>
<td>580 ± 230</td>
<td>370 ± 160</td>
<td>520 ± 240</td>
<td>670 ± 180</td>
</tr>
<tr>
<td>Average Radon (mBq m(^{-3}))</td>
<td>270 ± 200</td>
<td>530 ± 180</td>
<td>380 ± 180</td>
<td>110 ± 80</td>
</tr>
<tr>
<td>CN < 80 nm (cm(^{-3}))</td>
<td>122 ± 90</td>
<td>100 ± 65</td>
<td>102 ± 55</td>
<td>154 ± 124</td>
</tr>
<tr>
<td>CN > 80 nm (cm(^{-3}))</td>
<td>197 ± 102</td>
<td>305 ± 130</td>
<td>227 ± 114</td>
<td>149 ± 55</td>
</tr>
<tr>
<td>FTIR OM (µg m(^{-3}))</td>
<td>0.59 ± 0.37</td>
<td>1.0 ± 0.5</td>
<td>0.71 ± 0.42</td>
<td>0.4 ± 0.17</td>
</tr>
<tr>
<td>AMS OM (µg m(^{-3}))</td>
<td>0.23 ± 0.10</td>
<td>0.29 ± 0.11</td>
<td>0.24 ± 0.10</td>
<td>0.17 ± 0.10</td>
</tr>
<tr>
<td>AMS SO(_4^{2-}) (µg m(^{-3}))</td>
<td>0.93 ± 0.67</td>
<td>1.4 ± 1.0</td>
<td>1.1 ± 0.8</td>
<td>0.67 ± 0.33</td>
</tr>
<tr>
<td>FTIR Organic Functional Groups (µg m(^{-3}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkane</td>
<td>0.24 ± 0.16 (41%)</td>
<td>0.43 ± 0.20 (43%)</td>
<td>0.30 ± 0.19 (40%)</td>
<td>0.17 ± 0.09 (43%)</td>
</tr>
<tr>
<td>Carboxylic acid</td>
<td>0.19 ± 0.13 (32%)</td>
<td>0.34 ± 0.16 (34%)</td>
<td>0.23 ± 0.15 (33%)</td>
<td>0.11 ± 0.069 (29%)</td>
</tr>
<tr>
<td>Organic hydroxyl</td>
<td>0.12 ± 0.068 (20%)</td>
<td>0.16 ± 0.10 (16%)</td>
<td>0.14 ± 0.078 (20%)</td>
<td>0.088 ± 0.025 (22%)</td>
</tr>
<tr>
<td>Amine</td>
<td>0.015 ± 0.014 (3%)</td>
<td>0.023 ± 0.023 (2%)</td>
<td>0.019 ± 0.015 (3%)</td>
<td>0.0089 ± 0.0068 (3%)</td>
</tr>
<tr>
<td>Organosulfate</td>
<td>0.023 ± 0.047 (4%)</td>
<td>0.051 ± 0.085 (5%)</td>
<td>0.029 ± 0.058 (4%)</td>
<td>0.015 ± 0.019 (4%)</td>
</tr>
<tr>
<td>FTIR O/C (atomic)</td>
<td>0.62 ± 0.12</td>
<td>0.58 ± 0.073</td>
<td>0.63 ± 0.13</td>
<td>0.59 ± 0.13</td>
</tr>
<tr>
<td>FTIR OM/OC (mass)</td>
<td>2.0 ± 0.19</td>
<td>2.0 ± 0.11</td>
<td>2.1 ± 0.19</td>
<td>2.0 ± 0.20</td>
</tr>
<tr>
<td>AMS m/z 44 fraction (mass)</td>
<td>0.085 ± 0.057</td>
<td>0.14 ± 0.028</td>
<td>0.099 ± 0.052</td>
<td>0.023 ± 0.035</td>
</tr>
<tr>
<td>XRF Elements (ng m(^{-3}) unless specified)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S (µg m(^{-3}))</td>
<td>0.23 ± 0.15</td>
<td>0.42 ± 0.19</td>
<td>0.29 ± 0.17</td>
<td>0.15 ± 0.046</td>
</tr>
<tr>
<td>V</td>
<td>0.29 ± 0.18</td>
<td>0.43 ± 0.17</td>
<td>0.34 ± 0.172</td>
<td>0.12 ± 0.15</td>
</tr>
<tr>
<td>Br</td>
<td>0.39 ± 0.18</td>
<td>0.59 ± 0.25</td>
<td>0.43 ± 0.21</td>
<td>0.30 ± 0.083</td>
</tr>
<tr>
<td>Sn</td>
<td>5.9 ± 4.4</td>
<td>9.6 ± 6.5</td>
<td>7.8 ± 4.9</td>
<td>3.4 ± 1.5</td>
</tr>
<tr>
<td>Ni</td>
<td>1.1 ± 0.81</td>
<td>1.2 ± 0.82</td>
<td>1.3 ± 0.86</td>
<td>0.59 ± 0.13</td>
</tr>
<tr>
<td>K</td>
<td>7.0 ± 7.7</td>
<td>15 ± 12</td>
<td>9.4 ± 8.9</td>
<td>3.5 ± 3.0</td>
</tr>
<tr>
<td>Fe</td>
<td>1.3 ± 1.4</td>
<td>2.0 ± 1.8</td>
<td>1.6 ± 1.5</td>
<td>0.52 ± 0.18</td>
</tr>
<tr>
<td>Ca</td>
<td>1.7 ± 0.96</td>
<td>2.6 ± 1.1</td>
<td>2.0 ± 0.94</td>
<td>0.93 ± 0.42</td>
</tr>
</tbody>
</table>
Figure 6: (a) Organic mass quantified from FTIR spectroscopy on Teflon filters is 2.4 times that measured by the Aerodyne AMS. AMS OM is averaged from the 5-minute resolution data and includes only those points when the filters were sampling. Inset: The difference in organic mass measured by FTIR spectroscopy (not including organosulfate) and AMS is correlated to the concentration of crustal components (nss-K, nss-Ca, Al, Si, Fe, and Ti). The open square in both graphs is not included in either linear regression to preserve the meaning of the calculated coefficients. (b) Comparison of the sum of IC nss-SO$_4^{2-}$ and FTIR organic sulfate from COSO$_3$ with AMS sulfate.
Figure 7: (a) 96 organic-containing single particles identified by STXM-NEXAFS binned by 0.1 μm size increments. Bar height shows the total number of particles identified at each size. (b) Average spectrum of individual submicron organic-containing particles classified as “dust”, normalized by the average optical density between 305 and 320 eV. The average absorption of the pre-K edge portion of the spectrum (278-285 eV) was subtracted from all spectra. Vertical lines mark absorption peaks for organic and inorganic groups.
Figure 8: Comparison of acid fraction of PM$_1$ with (a) AMS sulfate and (b) dust fractions of PM$_1$.

Table 2: Organic functional group composition and elemental correlations for Positive Matrix Factorization (PMF) 2-Factor Analysis. Correlations stronger than 0.2 (and -0.2) are shown.

<table>
<thead>
<tr>
<th></th>
<th>Marine Factor</th>
<th>Combustion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average OM</td>
<td>0.11 ± 0.07</td>
<td>0.4 ± 0.3</td>
</tr>
<tr>
<td>Organic Composition (% mass)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkane</td>
<td>16%</td>
<td>65%</td>
</tr>
<tr>
<td>Carboxylic acid</td>
<td>6%</td>
<td>27%</td>
</tr>
<tr>
<td>Organic hydroxyl</td>
<td>71%</td>
<td>6%</td>
</tr>
<tr>
<td>Amine</td>
<td>8%</td>
<td>3%</td>
</tr>
<tr>
<td>Elemental Correlations (r)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>-0.22</td>
<td>0.94</td>
</tr>
<tr>
<td>V</td>
<td>0.24</td>
<td>0.74</td>
</tr>
<tr>
<td>Sn</td>
<td>-</td>
<td>0.69</td>
</tr>
<tr>
<td>K</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>Br</td>
<td>-</td>
<td>0.82</td>
</tr>
<tr>
<td>Ni</td>
<td>-</td>
<td>0.28</td>
</tr>
<tr>
<td>Ca</td>
<td>-</td>
<td>0.38</td>
</tr>
<tr>
<td>Fe</td>
<td>-</td>
<td>0.62</td>
</tr>
</tbody>
</table>
Figure 9: Positive Matrix Factorization of sample spectra resulted in two sources (Marine and Combustion) with representative FTIR spectra. As in Figure 3, colored bars across the top axis show the approximate range of absorbance of the functional groups. The average composition of each source is given in the two pie charts and corresponds to the values in Table 2.

Figure 10: Comparison of organosulfate fraction of PM$_1$ with (a) AMS sulfate and (b) AMS ammonium fractions of PM$_1$. (c) Comparison of organosulfate fraction of PM$_1$ with ambient RH (%).