Lecture Ch. 12

- Review of simplified climate model
- Revisiting: Kiehl and Trenberth
- Overview of “atmospheric heat engine”
- Current research on clouds-climate

Curry and Webster, Ch. 12
For Tuesday: Read Ch. 13
ROAST review comments due Nov. 23 at 11:59pm PT

Simplified Climate Model

- Atmosphere described as one layer
 - Albedo $\alpha_p \approx 0.31$: reflectance by surface, clouds, aerosols, gases
 - Shortwave flux absorbed at surface $F_s = 0.25S(1-\alpha_p)$
- Earth behaves as a black body
 - Temperature T_e: equivalent black-body temperature of earth
 - Longwave flux emitted from surface $F_L = \sigma T_e^4$

Curry and Webster, Ch. 12 pp. 331-337; also Liou, 1992

Simplified Climate Model

- Incoming shortwave = Outgoing longwave
- Energy absorbed = Energy emitted

\[F_s = 0.25S(1-\alpha_p) \]
\[F_L = \sigma T_e^4 \]
\[F_s = F_L \]

\[T_e = \left(\frac{0.25S(1-\alpha_p)}{\sigma} \right)^{0.25} \]

\[\alpha_p = 0.31, \quad T_e \approx 255K \]
\[\alpha_p = 0.30, \quad T_e \approx ? \]

Sensitivity to Albedo

- What if albedo changes?
 \[T_e = \left(\frac{0.25S(1-\alpha_p)}{\sigma} \right)^{0.25} \]
 \[\alpha_p = 0.31, \quad T_e \approx 255K \]
 \[\alpha_p = 0.30, \quad T_e \approx ? \]

- 1% decrease in albedo warms temperature 1K
- 1% increase in albedo cools temperature 1K

Simplified Climate Model

- At thermal equilibrium (why?)

\[F_s = F_L \]
\[0.25S(1-\alpha_p) = \sigma T_e^4 \]
\[T_e = \left(\frac{0.25S(1-\alpha_p)}{\sigma} \right)^{0.25} \]
\[T_e \approx 255K \]

- Observed surface temperature $T = 288K$
- What’s missing?

Solar Constant

- Luminosity of the sun
 \[L_0 = \text{luminosity of sun} \]

\[S_0 = \frac{L_0}{(4\pi d^2)} = 1.4 \times 10^3 \text{ W/m}^2 \]

\[L_0 = 3.9 \times 10^{26} \text{ W} \] (p. 331)

Area = $4\pi d^2$

\[d = 1.5 \times 10^{11} \text{ m} \] (p. 437)
Add an Atmosphere!

- Atmosphere is transparent to non-reflected portion of the solar beam
- Atmosphere in radiative equilibrium with surface
- Atmosphere absorbs all the IR emission

\[F_{\text{surf}} = \frac{1}{2} F_{\text{atm}} 0.25 S (1 - \alpha_p) = \sigma T_{\text{atm}}^4 \]

\[T_{\text{atm}} = 255 \text{K} \]

What’s wrong?

- With no atmosphere, \(T_{\text{surf}} = 255 \text{K} \)
- With “atmosphere”, \(T_{\text{surf}} = 303 \text{K} \)
- From observations, \(T_{\text{surf}} = 288 \text{K} \)

- Real atmosphere:
 - Not perfectly transparent to incoming solar
 - Not perfectly opaque to infrared
 - Not in pure radiative equilibrium with surface

- Three assumptions were wrong!

Atmospheric Heat Engine

- Latitudinal and meridional heat transfer
- Walker circulation and Aus-Asia monsoons
- Efficiency, irreversibility, entropy
- Hydrological cycle

Curry and Webster, Ch. 12

The Atmospheric “Heat Engine”

Latitudinal variation in the net radiation flux at the top of the atmosphere results in an overall heat transport from equatorial to polar regions. In effect, the atmosphere operates as a heat engine, whereby a portion of the absorbed radiation (heat source) is converted into kinetic energy (work). The efficiency of the atmospheric heat engine is low, because of strong irreversibilities in the system arising primarily from a highly irreversible heat transfer of solar radiation to the Earth. Finally, the global hydrological cycle modulates the Earth’s energy and entropy budgets through radiative and latent heating.
Atmospheric Heat Engine

The strength of the thermal circulation depends on the efficiency of the heat engine. For a reversible Carnot engine, we have from (3.30b):

\[\eta = 1 - \frac{T_f}{T_i} \]

If we identify \(T_f = 300 \text{ K} \) with the tropical surface heat source and \(T_i = 200 \text{ K} \) with the high-altitude tepid atmosphere cold sink, we obtain \(\eta = 33\% \). Since the Earth’s climate system is irreversible, the actual efficiency of the Earth as a heat engine is much smaller. A more meaningful estimate of the efficiency can be determined from (3.30c):

\[\eta = \frac{\Phi}{\Phi_0} \]

The heating term is the net incoming solar radiation, \(\Phi = \Phi_0 = 400\text{ W m}^{-2} \).

To estimate the work term, \(\Phi \), it is assumed that the production of kinetic energy is balanced by frictional dissipation, maintaining the average kinetic energy of the atmosphere. This term has been estimated by Cess and Prigent (1983) to be \(\Phi = 2\text{ W m}^{-2} \), yielding an efficiency of \(\eta = 33\% \).

Atmospheric Entropy

- Difference between energy and entropy flux

The total flow of entropy at the top of the atmosphere is determined by the radiative transfer (Figure 12.9). Although the net incoming and outgoing radiation at the top of the atmosphere are equal when averaged globally and over an annual cycle (12.1), the net incoming and outgoing radiation entropies are never equal to each other. The solar radiation tends to be a small amount of entropy in comparison with the entropy that longwave radiation removes from the system.

- Irreversible processes

implies the action of some irreversible processes. Since the temperature of the Earth-atmosphere system is considerably lower than the sun, which is the source of the solar radiation, there is a highly reversible heat transfer from the sun to the Earth. Scattering of radiation is an additional source of irreversibility.

Hydrological Cycle

- Definition

The continual movement of water among the reservoirs of ocean, atmosphere, and land is called the hydrological cycle. The total amount of water on Earth remains

- Residence times

the accumulation or depletion rate. The atmospheric residence time (mass or water vapor divided by total precipitation) is about 15 days, that is, the atmosphere recycles its water over 30 times per year. Surface water over land has a residence time of about 5 years, although the residence time for soil moisture is about 1 year and the total residence time for glaciers is 6000 years. The residence time of water in the oceans is about 3000 years, although not all parts of the ocean recycle at the same rate. In the ocean surface layers the time scales may be on the order of days to weeks, while deep bottom water may take thousands of years to recycle.

Atmospheric Entropy

- Internal production of entropy by Earth

and with the net solar radiation. This negative entropy stream at the top of the atmosphere allows internal production of entropy by Earth while at the same time maintaining order in the atmosphere. If the overall entropy of the atmosphere were increasing, the atmosphere would approach a state of maximum entropy, leading to a uniformity of the climate.

![Figure 12.9](image1.png)
Figure 12.9 Radiation transfer determines the flow of entropy at the top of the atmosphere. Outgoing longwave radiation removes entropy from the system, while incoming solar radiation adds entropy. (After Stephens and O'Brien, 1993.)

![Figure 12.10](image2.png)
Figure 12.10 The global water cycle and the reservoirs of water. Arrows indicate flows of water from one reservoir to another. Note that water in the atmosphere over the oceans and the land accounts for only 0.0001% of the total water in the system. Units are in 10^12 kg. (Data from Garb, 1993.)
Table 12.1: Evaluation of the recycling rate (%), which is the amount of precipitation that comes from local evaporation versus horizontal transport, evaluated for scales of 500 and 1000 km. (Data from Trenberth, 1998.)

<table>
<thead>
<tr>
<th>Scale (km)</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>9.6</td>
<td>16.8</td>
</tr>
<tr>
<td>Land</td>
<td>8.9</td>
<td>15.4</td>
</tr>
<tr>
<td>Ocean</td>
<td>9.9</td>
<td>17.3</td>
</tr>
</tbody>
</table>

Latitudinal Heating Distribution

- Net heating at equator
- Net cooling at poles

Figure 12.4 shows that the annual mean net radiation is positive equatorward of 40° latitude and negative at higher latitudes. Since polar temperatures are not observed to cool and tropical temperatures are not observed to warm on average, a transport of heat from equatorial to polar regions must occur. This transport occurs via fluid motions in the atmosphere and oceans that are driven by horizontal pressure gradients generated by the unequal heating.

Figure 12.5: Annual mean netward energy transport required to equalize the pole-equator radiation imbalance. The solid line represents the top-of-the-atmosphere radiation budget, the dashed line represents the atmosphere, and the dotted line represents the ocean. (From Zhang and Raman, 1997.)

Heating and Circulation

- Fluid motion from vertical density gradient

Suppose an initially barotropic atmosphere is heated at low latitudes and cooled at high latitudes in a manner such that there is no net heating over the globe. In a baroclinic atmosphere, the thickness of a layer between isobaric surfaces (a homoclinal atmosphere), and hence a horizontal pressure gradient that results in potential energy being available for conversion to kinetic energy.

This process is illustrated in Figure 12.6 by two immiscible fluids of different densities that are adjacent to each other. Assuming that both fluids are in hydrostatic equilibrium, a pressure gradient force is directed from the heavier fluid to the lighter one, causing the heavier fluid to accelerate towards the lighter one. The resulting motion will result in the heavier fluid lying beneath the lighter one. Through the sinking of denser fluid and the rising of the lighter fluid, the center of gravity of the system is lowered and potential energy is converted into kinetic energy of fluid motion.

Figure 12.6: (a) Heavier (shaded) and lighter fluids separated by a movable partition, AB. The dot represents the center of gravity. (b) Fluids in motion following the removal of the partition. (c) Equilibrium configuration of the fluids after the motion has disappeared.
Meridional Heat Transfer

- Equator-to-pole heat transport
 If the Earth were not rotating, the atmospheric transport of heat from pole to equator would serve as a direct thermal circulation: heating at the surface in the equatorial regions causes rising motion → heat is transported polewards at upper levels → sinking motion occurs over the polar regions → the circulation is completed by a low-level return flow of cold air from high to low latitudes. The actual meridional heat transport of heat in the atmosphere is complicated considerably by the Earth's rotation, angular momentum considerations and subsequent hydrodynamical instabilities, especially poleward of the subtropics. The large-scale eddies (e.g., storms) produced in mid-latitudes rapidly transfer heat poleward to satisfy the global energy balance.

Zonal Heat Transfer

- Walker circulation
- Asian-Australian monsoon

In addition to the global meridional transfer of heat from low to high latitudes, heat transfer occurs on large horizontal scales, primarily in response to turbulent heat fluxes into the atmosphere arising from surface temperature gradients arising from the geographical distribution of continents. The Walker Circulation (Figure 12.7) is generally symmetric about the equator with ascending motion in the warm pool regions of the Indian and Pacific Oceans and the Indonesian archipelago, and descent in the western Indian Ocean and the eastern Pacific Ocean. Weakening or reversal of the Walker circulation, where there is rising motion in the eastern Pacific and sinking motion in the western Pacific, occurs several times in a decade and is referred to as El Nino. The Asian–Australian monsoon (Figure 12.8) is a global circulation pattern which is asymmetric about the equator and has its focus and basic forcing from cloud/ocean interaction at the Eastern Hemispheres. If there were no tropical continents and the

Cloud-Climate feedbacks

WCRP 1998:
"Reducing the uncertainty in cloud-climate feedbacks is one of the toughest challenges facing the climate community"

IPCC 2007:
- "Water vapor changes represent the largest feedback affecting climate sensitivity and are now better understood"
- "Cloud feedbacks remain the largest source of uncertainty"

But which clouds and where and why?

GFDB and NCAR have opposite low cloud cover sensitivity to CO₂ doubling

IPCC 2007: "Cloud feedbacks remain the largest source of uncertainty"

Doubling CO₂ → less low clouds in GFDB → 4 K global warming

Doubling CO₂ → more low clouds in NCAR → 2 K global warming

Large sensitivity in the sub-tropics
How well are stratocumulus represented?
Observations versus ECMWF Re-Analysis (ERA)

How representative is the cross-section? Total cloud cover histograms

GPCI mean relative humidity - JJA 2003

Parameterization problem in climate models

Tropical and subtropical cloud regime transitions:
GCSS Pacific Cross-section Intercomparison (GPCI)

GPCI: JJA98 mean vertical velocity

General RH pattern from models and AIRS observations is similar

But there are substantial and problematic differences between models and AIRS

Atmospheric/oceanic model equation for a generic variable can be written as:

\[\frac{\partial \psi}{\partial t} + \frac{\partial}{\partial x} (\psi u) + \frac{\partial}{\partial y} (\psi v) + \frac{\partial}{\partial z} (\psi w) + S = \psi^* \]

Using Reynolds decomposition and averaging to get an equation for the mean:

\[\frac{\partial \psi^*}{\partial t} + \frac{\partial}{\partial x} (\psi^* u) + \frac{\partial}{\partial y} (\psi^* v) + \frac{\partial}{\partial z} (\psi^* w) = \psi^* \]

It is assumed that S is linear and the horizontal divergence terms of the sub-grid fluxes can be neglected

Models and observations are analyzed along a transect from stratocumulus, across shallow cumulus, to deep convection

Participation of 22 international climate/weather prediction models

Severe underestimation of Sc clouds

July 1987, San Nicolas island, California

Duynkerke and Teixeira, JCLI, 2001

32

Dunne, K. 2000

GFDL, 20 N, 210 E

20 N, 210 E

20 N, 220 E

NCAR, 20 N, 215 E

Results from adjacent points are similar. Models are different.

33

34

35

36
Parameterization problem in Climate models

Resolution of climate prediction models: Δx-Δy~100 km

Essence of parameterization problem

How to estimate the joint PDFs of generic model variables
→ estimating \(\phi, \phi^2, \phi^3, \ldots \), and also co-variances \(\mathbb{E}[\phi^2] \)

PDF of temperature in the grid-box

Temperature (K)

Probability

Latitude

Longitude

SST sensitivity to cloud parameterization

Large SST warm biases reduced by new model

SST: old_model - analysis

SST: new_model - analysis

SST: new_model - old_model

Teixeira et al.

PDF-based stratocumulus cloud parameterization in a coupled model

Models and observations for Aug. 2004

Low cloud cover - ISCCP observations

New model much closer to observations

Low cloud cover - old model

Low cloud cover - new model

Teixeira et al.

Summary

- Cloud-climate feedbacks are a major issue in climate prediction
- Climate prediction models still have serious difficulties in representing small-scale physical processes such as turbulence, clouds and convection
- Recent satellite data can characterize in a fairly comprehensive manner cloud regime transitions (e.g. subtropics to tropics transition)
- New approaches that lead to more realistic results: PDF-based cloud methodologies are based on a sound theoretical framework and have stronger connections to observations

Significant improvements in climate models are imperative. Can only happen through a combination of Theory-Models-Observations (in-situ and satellite)