Lecture Ch. 4a

¢ Equilibrium

* Phase changes

* Enthalpy changes from phase changes
— Latent heat
— Clapeyron equation
— Clausius-Clapeyron equation

Curry and Webster, Ch. 4 (pp. 96-115; skip 4.5 (except 4.5.1), 4.6)
Reminder: Homework Problem Ch.4 Prob. 4,5
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Figure4.1 Atomic configuration of the water molecule. Bonding with unshared electronsin
ll%lﬂ:uir orbitals forms a roughly tetrahedral configuration, with an H-O-H bond angle of

in 3 phases in the atmosphere.

Figured.2 Three-dimensional lattice structure of ice. Water molecules are held together in
the ice structure by hydrogen bonding. Each water molecule is bonded to its four nearest
neighbors. Dashed lines show tetrahedral ion. View in (b) is perpendicularto view
in(a). (AfterHobbs,1974.)

Table 4.1 Examples of some thermodynamic systems
and their associated numbers of components and phases.

Examples Components Phases

Liquid water with ice
Mixture of two gases
Oil and vinegar
Water and alcohol
Sugar in water

Sand in water

Two blocks of copper
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Atmospheric APomponentsAy

In our studies of the atmosphere and ocean, we will consider the following sys-
tems:

1) moist air (dry air + water vapor): x=2; ¢=1;

2) liquid cloud (dry air + water vapor + liquid water drops): ¥ =2; p=2;

3) cloud drops (liquid water + a soluble acrosol particle): x=2; ¢=1;

4) mixed-phase cloud (dry air + water vapor + liquid water drops + ice particles):
x=29=3;

5) ice cloud (dry air + water vapor + ice particles): ¥ =2, ¢p=2;

6) ocean (water -+ salt, with or without sea ice): ¥=2; @=1,2.

Phase Diagrams

* Pressure-temperature diagrams

* Degrees of freedom

by 7 (9~ 1). The Gibbs phase rule|relates the number of degrees of freedom, £, the
number of phases, @, and the number of components, 7, in the following way:

f=2+0(x-1)-2(p-1) = 2-0+2 “2)

where the number “2" refers to the degrees of freedom associated with temperature
and pressure of all phases. The Gibbs phase rule states that the total number of degrees

* Pressure-volume diagrams

a ent variables; ore than one phase e
there are less than 2. Hence, when we look at phase changes, we are

constrained in state space.




Tiquid

f=2

Pure water
(1 component)

6.11 hPa

273.16K T

di points for which two

e e for
liquid water to temperatures below 273.16 K. The solid curve below 273.16 K connects the
points at which ice and vapor coexist at equilibrium. p,, indicates the pressure and
temperature values beyond which liquid water and water vapor are no longer distinguishable
from one another. p,, indicates the triple point, the unique p, T point at which all three phases
coexist.

Figure4.3 p,Tphasedi for water. The th ves i
h st at equilibri dashed isth :

Phase Equilibrium
¢ Thermal equilibrium T)=T
* Mechanical equilibrium ~ Pr=P2
* Chemical equilibrium Hy =y

w=e (.6)

and dn = 0. For a closed system at constant temperature and pressure, we therefore
have

G = ;u,dn, =0 9)

Reminder: Gibbs (Free) Energy

Ky ey e o,

For rna.ny applications in the phere and ocean, it is useful to define a new
state function whose natural ind pendent variables are and pressure.| The]
Gibbs energy, g, is defined as

g =u=-Tn+pv =h-Tp (2.33)

or in extensive form

G=H-T0

where 77 = mn is used to denote extensive entropy and G = my is the extensive Gibbs|
energy. In differential form we have

dg =-ndT +vdp (2.34)
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Figure 4.4 p,V phase diagram for water. | Solid lines are isotherms. | Vapor initially at A is
compressed isothermally to B, where liquid water begins to form. Further compressionleads
toincreased formationof liquid wateruntil at C, all ini vapor

Any further i iseinthe p

pointsC and D
(liquid) is steeper than that between points A and B (vapor), indicating that liquid water is less
easily compressedthan water vapor.

Chemical Equilibrium

n
* Two phases in equilibrium GF,P =0

— Constant T, P
[1]
Grp=0

* Phase changes
— Constant T, P

¢ (What was G?)

The natural independent variables of the Gibbs energy are and pressure

Reminder:
Tangent vs. Average

dp., #p _p,$p
dT #T  T,$T,

6.11 hPa

#up & dp
—( vs. ——
T, dT 273.16K T
l’!gnre4.3 p.Tph “ for water. The thr o vesindi points for which two
at efor

veis the vapy
liquid water to temperatures below 273.16 K. The solid curve below 273.16 K connects the
points at which ice and vapor coexist at equilibrium. p,, indicates the pressure and
temperature values beyond which liquid water and water vapor are no longer distinguishable
from one another. p,, indicates the triple point, the unique p, T point at which all three phases
coexist.




Enthalpy Change

* Enthalpy for phase transition

¢ Define latent heat o
transition, entropy and the specific volume will increase. The enthalpy change during
the phase transition is

Definition: ,, -, (4.10)

where L is the latent heat of the phase ition|(sometimes called l’?.“.’ﬂﬂ.."’.'l,’,(’.f‘

phase transition. Note that Ly = L, — Ly. Mge_m;mmm
pressure, the entropy change can easily be shown from (2.32) and (4.10) to be

From2.32atdp=0: an-4:-L @I

Small Inconsistency in Terms,
but Results are Correct; Why?

* p.56 G=mg and p.105 p=0G/dn

* But p. 105 also says pu=g; how is this true?
This is true for G and

g:g_gzig n since they are linear
m Mn Mn with no offset.
/ "
H= % ! —(j (holding other vafiables constant)
"G 1G

Since G=0 at n=0: — ! —# ——

BUBIRILE This is likely what text
meant. So keep your units
straight and youOll be ok.

Sou#g

Key Combined 18+2" Law Results

I8t Law: du=dg+dw; u is exact Eq.2.8

¥ du=dq,.,-pdv (reversible, expansion only) p. 56
Define Enthalpy: H=U+PV Eq.2.12
¥ dh=du+pdv+vdp (also Eq. 2.32: dh=vdp+Tdn)

2n Law: [dq,.,/T] =0 Eq.2.27
Eq.2.25a

int.cycle

Define Entropy: dn=dq,.,/T

¥ Tdn=dq,,

¥ du=Tdn-pdv

Define Gibbs: G=H-Tn Eq.2.33
¥ dg=dh-Tdn-ndT=(du+pdv+vdp)-Tdn-ndT

¥ dg=du-(Tdn-pdv)+vdp-ndT=vdp-ndT p. 58

(! p/t)=n/v Eq.2.40

Clapeyron Equation

» Enthalpy change for any phase transition

dG =-NdT +Vvdp

[GEX oo | |

(4.4) ‘

Exaot! (fangent)
Since dg, = dg, at equilibrium, we may write
Def/m: dg=-ndT+vdp (Egq. 2.34)
=M dT+v,dp = =N, dT +v,dp (4.13)

Collecting terms we have By definition of

Not exact but usually
good (on average) at
equilibrium
which is known as the M Since dp=0  HEgFWN
equation can be used to evaluate the slope of each of the f= 1 lines on the p, T'phase
diagram (Figure 4.3).

latent heat

dp _M-M|lAn _ Ak 7L
dT ~ ”:“':H Av _TAv ~ TAv @14

Clausius-Clapeyron
Equation

* Latent heat of vaporization
For thd iuid-vapor cquiibrun]

Ly

4.17)
o,-0) @

EN

At the triple point v, =206 m* kg-) and ;= 10-3m? kg"l, s0 that v, >> 7, and ;can
be neglected relative (o v, We may then write the Clapeyron equation as

%._;'_,'}v (4.18)

If we substitute the ideal gas law for v,, we obtain pv=RT

L
% = R’—’T’, (4.19)

Equation (4.19) is the|Clausius-Clapeyron equation.

Phase Change Relationships

* Clapeyron equation

— All phase changes
— Non-ideal equations of state
dp M- _An _ Ah _ L (4.14)

dr v -0 Av  TAv TAv

* Clausius-Clapeyron equation
— Liquid-vapor equilibrium only: v, << vy,
— Ideal gas law for vapor: vy, =RT/p

TR 4.19)
v




Water Saturation Pressures

. (this is one consequence of
es doubles with every 10C! Clausius-ClapeyronAdlequation)
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Reminders

+ Virtual Temperature: The temperature air would have at the given pressure and density if there
were no water vapor in it

T, =T(1+0.608;,)
v v
+ Potential Temperature: The temperature a parcel would have if it were brought adiabatically and
reversibly to p, (usually 1 atm)
g Ry
Py |~
0=T 1>

* Virtual Potential Temperature: The temperature a parcel would have if there were no water vapor
in it (only condensed water) and if it were brought adiabatically and reversibly to p, (usually 1 atm)

Ry
# &%ﬂd
" =T(1+ 0.608%)%%(

Water Vapor Metrics

The water vapor mixing ratio, w,, is the ratio of the mass of water vapor present (0
the mass of dry air. Ttis thus defined, afier substituting from the ideal gas law, as

= (436)

my

where £= M, 1M, = 0.622 (Section 1.7). A value of the saturation mising ratio, wy, is
given by

37

Since p>>eand p>> e,
Pid 4.38)
o (4.38)

is an approximate defnition of the relative humidity.
i ific humidity, gy, which was

vapor
originally defined in Section 1.7, as

My o e ™
mgm,” “p-(i-ge  T+w,

(439)

Since both w, and g, are always smaller than 0.04, g, = w;.

Water Vapor Metrics

V) %GR, ) 96 . / -
iMﬁld&'iR%v&' 062z §R Rug&‘t 1=0.60¢
R = e

Water vapor by m, " _ m, _w W,
mass. S —==T q,= = H=
my g my;+m, 1+w, Ws
Water vapor by e # @ 8 H
artial =) —= =0.622%—————| =
partial pressure w, =0. 62{ e e) 9q, & (1 5 0.622)e'( e,
Water saturation # § # &
e e -
w, = 0.62 =0.622f ] FI=4
St e N A Y
Virtual
temperature T, = T(l+ 0'6081")
Virtual potential Ry L,

temperature 0, = T(l + 04608qv)(&)
14

Temperature Metrics

* Virtual Temperature: The temperature air would have at the given
pressure and density if there were no water vapor in it

« Potential Temperature: The temperature a parcel would have if it
were brought adiabatically and reversibly to p, (usually 1 atm)

« Virtual Potential Temperature: The temperature a parcel would have
if there were no water vapor in it (only condensed water) and if it were
brought adiabatically and reversibly to p, (usually 1 atm)

« Equivalent Temperature: The temperature that an air parcel would
have if all of the water vapor were to condense in an adiabatic isobaric
process

« Equivalent Potential Temperature: The temperature a parcel would
have if all of the water were condensed in an adiabatic isobaric process
and if it were brought adiabatically and reversibly to p, (usually 1 atm)

Ch. 4: Problem 5

Consider {r at a temperature of 30;{C, a pressure of 1,000 hPa, and a relati
humidity o%ind thevaluesof thefollowing quantities:
a) vapowpressure
b) mixing ratio
c) specific humidity
d) specificheatat constantpressure
e) virtual temperature




Clausius Clapeyron Example

The saturation vapor pressure at a temperature of 30°C is 42.4 hPa. The gas constant for
dry airis 287 J K" kg"'. The gas constant for water vapor is 461 J K'kg'.

In addition to the constants given above, here is one more: the saturation vapor pressure
at a temperature of 40°C is 73.8 hPa. Assuming that the latent heat of vaporization is
constant, use this information to calculate the numerical value for this latent heat.

Clausius Clapeyron Example

The saturation vapor pressure at a temperature of 30°C is 42.4 hPa. The gas constant for
dry air is 287 J K'kg"'. The gas constant for water vapor is 461 J K'kg'.

In addition to the constants given above, here is one more: the saturation vapor pressure
at a temperature of 40°C is 73.8 hPa. Assuming that the latent heat of vaporization is
constant, use this information to calculate the numerical value for this latent heat.
The Clausius Clapeyron equation can be integrated if L is assumed constant, and the
result is Eqn. 4.23. Using 30°C=303K and 40°C=313K, and knowing saturation
vapor pressure values for each, the only unknown is L. Solving Eqn. 4.23,

e, =eexpl-{ L1

L R

L, =R |11 =_461(M)(lnl)=2.4x10“
T-T\ e 303-313\ 424

L=2.4x10° Jikeg.

* Phase equilibrium definitions

— Criteria of phase equilibria (thermal, mechanical,
chemical)

— Degrees of freedom reduced by phases
— Phase diagram of (pure) water
¢ Clausius-Clapeyron equations

— Strong dependence of e, on temperature (and L,,)
¢ Doubles every 10C

— There are two ways to saturate, i.e. H=e/e,=1
¢ Increase water vapor in parcel (e)
 Decrease temperature (and hence e, )

Midterm Wed. Nov. 19

¢ Chapters 1-4, excluding ocean-specific sections
— Composition, Structure, State
— First and Second Laws of Thermodynamics
— Transfer Processes plus Simple Thermo Model
— Thermodynamics of Water
¢ In class 80 min (12:30-1:50 pm, NTV 330)
* Closed book

» Constants provided

Curry and Webster, Ch. 1-4




